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Abstract. The search for train connections in state-of-the-art commer-
cial timetable information systems is based on a static schedule. Un-
fortunately, public transportation systems suffer from delays for various
reasons. Thus, dynamic changes of the planned schedule have to be taken
into account. A system that has access to delay information about trains
(and uses this information within search queries) can provide valid al-
ternatives in case a connection does not work. Additionally, it can be
used to actively guide passengers as these alternatives may be presented
before the passenger is already stranded at a station due to an invalid
transfer.

In this work, we present an approach which takes a stream of delay
information and schedule changes on short notice (partial train cancel-
lations, extra trains) into account. Primary delays of trains may cause a
cascade of so-called secondary delays of other trains which have to wait
according to certain policies for delays between connecting trains. We
introduce the concept of a dependency graph to efficiently calculate and
update all primary and secondary delays. This delay information is then
incorporated into a time-expanded search graph which has to be updated
dynamically. These update operations are quite complex, but turn out
to be not time-critical in a fully realistic scenario.

We finally present a case study with data provided by Deutsche Bahn
AG, showing that this approach has been successfully integrated into
the multi-criteria timetable information system MOTIS and can handle
massive delay data streams instantly.

Keywords: timetable information system, primary and secondary de-
lays, dependency graph, dynamic graph update

1 Introduction and Motivation

In recent years, the performance and quality of service of electronic timetable
information systems has increased significantly. Unfortunately, not everything

* A preliminary version of this paper has appeared in Proceedings of ATMOS 2008 [1].
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runs smoothly in scheduled traffic and delays are the norm rather than the
exception.

Delays can have various causes: Disruptions in the operations flow, accidents,
malfunctioning or damaged equipment, construction work, repair work, and ex-
treme weather conditions like snow and ice, floods, and landslides, to name just
a few. On a typical day of operation in Germany, an online system has to handle
about 6 million forecast messages about (mostly small) changes with respect to
the planned schedule and the latest prediction of the current situation. Note
that this high number of changes also includes cases where delayed trains catch
up some of their delay.

A system that incorporates up-to-date train status information (most im-
portantly, information about future delays based on the current situation) can
provide a user with valid timetable information in the presence of disturbances.

Such an on-line system can additionally be utilized to verify the current
status of a journey.

— Journeys can either be still valid (i.e., they can be executed as planned),
— they can be affected such that the arrival at the destination is delayed, or
— they may no longer be possible.

In the latter case, a connecting train will be missed, either because the con-
necting train cannot wait for a delayed train, or the connecting train may have
been canceled. In a delay situation, such status information is very helpful. In
the positive case — all planned train changes are still possible — passengers can
be reassured that they do not have to worry about missing their connecting
train(s). To learn that one will arrive z minutes late with the planned sequence
of trains may allow a customer to make arrangements, e.g. inform someone to
pick one up later. In the unfortunate case that a connecting train will be missed,
this information can now be obtained well before the connection breaks and
the passenger is stranded at some station. Therefore, valid alternatives may be
presented while there are still more options to react. This situation is clearly
preferable to missing a connecting train and then using any information system
(ticket machine, service counter) to request an alternative.

Because up to now commercial systems do not take the current situation
into account (even though estimated arrival times may be accessible for a given
connection, these times are not used actively during the search), their recom-
mendations may be impossible to use, as the proposed alternatives already suffer
from delays and may even already be infeasible at the time they are delivered
by the system.

From static to real-time timetable information systems. The standard
approach to model static timetable information is as a shortest path problem in
either a time-expanded or time-dependent graph. The recent survey [2] describes
the models and suitable algorithms in detail. Previous research on timetable in-
formation systems has focused on the static case, where the timetable is consid-
ered as fixed.
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Here we start a new thread of research on dynamically changing timetable
data as a consequence of disruptions. Our contribution is

— the development of a first prototypal but yet completely realistic timetable
information system that incorporates current train status information into
a multi-criteria search for attractive train connections. Modeling issues have
been discussed in the literature on a theoretical level [3] but no true-to-life
system with real delay data has been studied and, to our knowledge, no
such system that guarantees optimal results (with respect to even a single
optimization criterion) exists. We provide results of implementing such a
system for a real world scenario with no simplifying assumptions.

— We propose a system architecture intended for a multi-server environment,
where the availability of search engines has to be guaranteed at all times.
Our system consists of two main components, a real-time information server
and one or several search servers. The real-time information server receives
a massive stream of status messages about delayed trains. Its purpose is
to integrate schedule changes into the “planned schedule”. Moreover, it has
to compute from the received messages (primary delays) all so-called sec-
ondary delays which result from trains waiting for each other according to
certain waiting policies. The new overall status information is then sent to
the search servers which incorporate all changes into their internal model.
Search servers, in turn, are used to answer customer queries about train
connections.

— Both servers require a specific graph model as the underlying basic data

structure. We here introduce the concept of a dependency graph as a model
to efficiently propagate primary delay information according to policies for
delays in the real-time information server. Our dependency graph (intro-
duced in Section 4) is similar to a simple time-expanded graph model with
distinct nodes for each departure and arrival event in the entire schedule for
the current and following days. This is a natural and efficient model, since
every event has to store its own update information.
For the search server we use a search graph. Here, we are free to use either the
time-expanded or the time-dependent model. In this work, we have chosen
to use the time-expanded model for the search graph, since our previous
work, the timetable information server MOTIS [4], is based on this. Although
update operations are quite complex in this model, it will turn out that they
can be performed very efficiently, in 17us per update message on average.

— To store a full timetable over a typical period of a year, static timetable
systems are usually built on a compact data structure. For example, they
identify the same events on different days of operation and use bitfields to
specify valid days. This space saving technique does not work in a dynamic
environment since the members of such an equivalence class of events have
to be treated individually, as they will have, in general, different delays. We
will show how a static time-expanded graph model can be extended to a
dynamic graph model without undue increase in space consumption.
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Related work. Delling et al. [3] independently of us came up with ideas on
how to regard delays in timetabling systems. In contrast to their work we do
not primarily work on edge weights, but consider nodes with timestamps. The
edge weight for time follows, whereas edge weights for transfers and cost do not
change during the update procedures. This is important for the ability to do
multi-criteria search. Due to a number of low-level optimizations we achieve a
considerable speed-up over the preliminary work in Frede et al. [1].

A related field of current research is disposition and delay management. Gatto
et al. [5, 6] have studied the complexity of delay management for different sce-
narios and have developed efficient algorithms for certain special cases using
dynamic programming and minimum cut computations. Various policies for de-
lays have been discussed, for example by Ginkel and Schébel [7]. Schébel [8] also
proposed integer programming models for delay management. Stochastic models
for the propagation of delays are studied, for example, by Meester and Muns [9].
Policies for delays in a stochastic context are treated in [10].

Overview. The remainder of this paper is organized as follows. In Section 2,
we will discuss primary and secondary delays. We introduce our system archi-
tecture in Section 3, and describe its two main components afterwards. First,
we explain our dependency graph model and the propagation algorithm for de-
lays (in Section 4). Then, we briefly review the time-expanded graph model and
our search server MOTIS (Section 5). Afterwards, we present the update of the
search graph (in Section 6). A major issue for a real system, the correct treat-
ment of days of operation, will be discussed in Section 7. Afterwards, we provide
our experimental results in Section 8. Finally, we conclude and give an outlook.

2 Up-To-Date Status Information

2.1 Primary Delay Information

First of all, the input stream of status messages consists of reports that a certain
train departed or arrived at some station at time 7 either on time or delayed
by & minutes. In case of a delay, such a message is followed by further messages
about predicted arrival and departure times for all upcoming stations on the
train route.

Besides, there can be information about additional trains (specified by a list
of departure and arrival times at stations plus category, attribute and name
information). Furthermore, we have (partial) train cancellations, which include
a list of departure and arrival times of the canceled stops (either all stops of the
train or from some intermediate station to the last station).

Moreover, we have manual decisions by the transport management of the
form: “Change from train ¢ to ¢’ will be possible” or “will not be possible”.
In the first case it is guaranteed that train ¢’ will wait as long as necessary to
receive passengers from train ¢. In the latter case the connection is definitively
going to break although the current prediction might still indicate otherwise.
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This information may depend on local knowledge, e.g. that not enough tracks
are available to wait or that additional delays are likely to occur, or may be
based on global considerations about the overall traffic flow. We call messages
of this type connection status decisions.

2.2 Secondary Delays

Secondary delays occur when trains have to wait for other delayed trains. Two
simple, but extreme examples for policies for delays are:

— never wait In this policy, no secondary delays occur at all in our model. This
causes many broken connections and in the late evening it may imply that
customers do not arrive at their destination on the same travel day. However,
nobody will be delayed who is not in a delayed train.

— always wait as long as necessary
In this strategy, there are no broken connections at all, but massive delays
are caused for many people, especially for those whose trains wait and have
no delay on their own.

Both of these policies seem to be unacceptable in practice. Therefore, train
companies usually apply a more sophisticated rule system specifying which trains
have to wait for others and for how long. For example, the German railways
Deutsche Bahn AG employ a complex set of rules, dependent on train type and
local specifics.

In essence, this works as follows: There is a set of rules describing the max-
imum amount of time a train ¢t may be delayed to wait for passengers from a
feeding train f. Basically, these rules depend on train categories and stations.
But there are also more involved rules, like if ¢ is the last train of the day in
its direction, the waiting time is increased, or during peak hours, when trains
operate more frequently, the waiting time may be decreased.

The waiting time wts(t, f) is the maximum delay acceptable for train ¢ at
station s waiting for a feeding train f. Let dep3°"®?(t) and dep,(t) be the de-
parture time according to the schedule resp. the new departure time of train ¢
at station s, arrs(t) the arrival time of a train and mincts(f,t) the minimum
change time needed from train f to train ¢ at station s. Note that in a delayed
scenario the change time can be reduced, as guides may be available that show
changing passengers the way to their connecting train. Train ¢ waits for train f
at station s if

arrs(f) +minct,(f,t) — depi™(t) < wts(t, f).

In this case, train ¢ will incur a secondary delay. Its new departure time is
determined by the following equation

deps(t) = {arrs(f) +mincts(f,t) if t waits

depsehed(t) otherwise.
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Fig. 1. Sketch of the system architecture.

In case of several delayed feeding trains, the new departure time will be deter-
mined as the maximum over these values.

During day-to-day operations these rules are always applied automatically.
If the required waiting time of a train lies within the bounds defined by the rule
set, trains will wait. Otherwise they will not. All exceptions from these rules
have to be given as connection status decisions.

3 System Architecture

Our system consists of two main components, see Figure 1 for a sketch. One
part is responsible for the propagation of delays from the status information
and for the calculation of secondary delays, while the other component handles
connection queries. The core of the first part, our real-time information server, is
a dependency graph which models all the dependencies between different trains
and between the stops of the same train and is used to compute secondary delays
(in Section 4 we introduce in detail the dependency graph and propagation
algorithm). The dependency graph stores the obtained information needed to
update the search servers and transmits this information in a suitable format
to them. The search servers in turn update their internal graph representation
whenever they receive these changes. This decoupling of dependency and search
graph allows us to use any graph model for the search graph.

In a distributed scenario this architecture can be realized with one server
running as the real-time information server that continuously receives new status
information and broadcasts it. We will present some details in the following
subsection. Load balancing can schedule the update phases for each server. If
this is done in a round-robin fashion, the availability of service is guaranteed.
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Multi-Server Approach

The search server mainly consists of a search graph, an update component for
the search graph, and a query algorithm.

In a multi-server environment, updates of a search server are either triggered
by a load balancer or an internal clock after a maximum amount of time without
update. The data it receives (called state delta for the remainder of this work) are
lists of changed departure and arrival times as well as meta-information about
additional and canceled trains and connection status decisions. Subsequently, it
adjusts the search graph accordingly and thereafter the graph looks exactly as if
it were constructed from a schedule with all these updated departure and arrival
times. Thus, the search algorithm does not need to know whether it is working
on a graph with updated times or not.

The real-time information server receives all the up-to-date status infor-
mation, uses its internal dependency graph to compute updated departure and
arrival times (cf. Section 4) and stores these and the meta-information in a
data structure UDS (update data structure). UDS maintains for every event with
a changed timestamp a 3-tuple consisting of (1) a reference to the event itself,
(2) the latest updated timestamp of this event, and (3) the release time when
the last update of this event took place. Whenever a search server requests an
update, it receives all events with a release time later than the last update of
that server. If the timestamp of an event (or node in the graph model) changes,
we call the necessary update a (node) shift.

For a true multi-server architecture with multiple search servers we basically
have two update scenarios:

— An additional search server joins in and has to be initialized to the current
time: We iterate over all existing event entries in UDS and transmit all those
with times differing from the scheduled time.

— A search server has answered a number of queries and now enters update
mode: We could simply transmit all events with release time greater than
the last update time of the search server (referenced as iterator version). As
this requires iterating over all stored events even to calculate a small delta,
we can do more efficiently utilizing a map (referenced as map version).

In the map version a map of all changed events and their previous event
time is maintained for each search server individually. Whenever a new event
time is released, we look for that event in the map. Only if it is not already
present, we store the event itself and its event time before the last change. This
is the current timestamp of the event in the search server. To answer an update
request we simply return all events in this map, whose new event time differs
from the event time in the map (and thus the time in the current server), and
clear the map afterwards. Using this technique we not only save iterating over
all entries to determine the set of changed events (our state delta) but also avoid
transmitting events that have been changed more than once and do not require
a shift, since their new event time is the same as in the last update.
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Our UDS data structure enables us to transmit only consistent state deltas
on demand. Thereby, we can decrease both the time spent in communication
and updating the graphs (e.g. if between two update phases more than one
information for a single event is processed in the dependency graph, it is not
required to transmit the intermediate state and adjust the graph accordingly).

4 Dependency Graph

4.1 Graph Model

Our dependency graph (see Figure 2) models the dependencies between different
trains and between the stops of the same train. Its node set consists of four types
of nodes:

— departure nodes,
arrival nodes,

— forecast nodes, and
— schedule nodes.

Each node has a timestamp which can dynamically change. Departure and
arrival nodes are in one-to-one correspondence with departure and arrival events.
Their timestamps reflect the current situation, i.e. the expected departure or
arrival time subject to all delay information known up to this point.

Schedule nodes are marked with the planned time of an arrival or departure
event, whereas the timestamp of a forecast node is the current external prediction
for its departure or arrival time.

The nodes are connected by five different types of edges. The purpose of an
edge is to model a constraint on the timestamp of its head node. Each edge e =
(v,w) has two attributes. One attribute is a Boolean value, signifying whether
this edge is currently active or not. The other attribute 7(e) denotes a point in
time which basically can be interpreted as a lower bound on the timestamp of
its head node w, provided that the edge is currently active.

— Schedule edges connect schedule nodes to departure or arrival nodes. They
carry the planned time for the corresponding event of the head node (accord-
ing to the published schedule). Edges leading to departure nodes are always
active, since a train will never depart prior to the published schedule.

— Forecast edges connect forecast nodes to departure or arrival nodes. They
represent the time stored in the associated forecast node. If no forecast for
the node exists, the edge is inactive.

— Standing edges connect arrival events at a certain station to the following

departure event of the same train.
They model the condition that the arrival time of train ¢ at station s plus
its minimum standing time stand,(t) must be respected before the train can
depart (to allow for boarding and disembarking of passengers). Thus, for a
standing edge e, we set 7(e) = arrs(t)+stand,(t). Standing edges are always
active.
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Fig. 2. Illustration of the dependency graph model.

Traveling edges connect a departure node of some train ¢ at a certain station
s to the very next arrival node of this train at station s’. Let deps(t) denote
the departure time of train ¢ at station s and tt(s,s’,t) the travel time
for train ¢ between these two stations. Then, for edge e = (s,s’), we set
7(e) = deps(t) +tt(s, s, t). These edges are only active if the train currently
has a secondary delay (otherwise the schedule or forecast edges provide the
necessary conditions for its head node).

Due to various, mostly unknown factors determining the travel time of trains
in a delayed scenario, e.g. speed of train, condition of the track, track usage
(by other trains and freight trains that are not in the available schedule),
used engines with acceleration/deceleration profiles, signals along the track
etc. we assume for simplicity that tt(s, s’, ) is the time given in the planned
schedule. However, if a more sophisticated, but efficiently computable oracle
for tt(s,s’,t) taking the mentioned factors into account were available, it
could be used without changing our model.

Transfer edges connect arrival nodes to departure nodes of other trains at
the same station, if there is a planned transfer between these trains. Thus, if
f is a potential feeder train for train ¢ at station s, we set 7(e) = waits(t, f),
where

) _ Jarrs(f) + mincts(f,t) if t waits for f
waits(t, f) = {0 otherwise

\J
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(cf. Section 2.2) if we respect the waiting rules. Recall that ¢ waits for f only
if the following inequality holds

arrs(f) +mincty(f,t) — dep;"“(t) < wts(t, f)

or if we have an explicit connection status decision that ¢ will wait.

By default these edges are active. In case of an explicit connection status
decision “will not wait” we mark the edge in the dependency graph as not
active and ignore it in the computation.

For an “always wait” or “never wait” scenario we may simply always set 7(e)
to the resulting delayed departure time or to zero, respectively.

4.2 Computation on the Dependency Graph

The current timestamp for each departure or arrival node can now be defined
recursively as the maximum over all deciding factors: For a departure of train ¢
at station s with feeders fi,..., f, we have deps(t) =

max{depic’wd (t),depl(t), arrs(t) + stands(t), max}_{waits(t, f;)}}.
For an arrival we have

arrs(t) = max {arrie(t), arrfo(t), depy (t) + tt(s', s, t)}
with the previous stop of train ¢ at station s’. Inactive edges do not contribute
to the maximum in the preceding two equations.

If we have a status message that a train has finally departed or arrived at
some given time depf in resp. arr! m, we do not longer compute the maximum
as described above. Instead we use this value for future computations involving
this node.

We maintain a priority queue (ordered by increasing timestamps) of all nodes
whose timestamps have changed since the last computation was finished. When-
ever we have new forecast messages, we update the timestamps of the forecast
nodes and, if they have changed, insert them into the queue. For a connection
status decision we modify the corresponding transfer edge and update its head
node. If its timestamp changes, it is inserted into the queue. As long as the
queue is not empty, we extract a node from the queue and update the times-
tamps of the dependent nodes (which have an incoming edge from this node). If
the timestamp of a node has changed in this process, we add it to the queue as
well.

For each node we keep track of the edge e,,4, which currently determines the
maximum so that we do not need to recompute our maxima over all incoming
edges every time a timestamp changes. Only if 7(eyq4.) was decreased or 7(e)
for some € # €4, increases above 7(€,4,) the maximum has to be recomputed.

— If 7(e) decreases and e # €4, nothing needs to be done.
— If 7(e) increases and e # €4, but 7(e) < T(€maz) nothing needs to be done.
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— If 7(e) increases and e = €4, the new maximum is again determined by
emaz and the new value is given by the new 7(€maz)-

When the queue is empty, all new timestamps have been computed and the
nodes with changed timestamps can be sent to the search graph update routine
or, in the multi server architecture, to the UDS data structure.

A note on the implementation. For ease of exposition we have introduced all
kinds of nodes and edges in the dependency graph as being real nodes and edges.
Of course, in our implementation we do not use a node and an edge to encode
nothing more than a single timestamp for schedule and forecast times. Only
arrival and departure nodes are real nodes with entering and leaving edges plus
two integer variables representing the scheduled and forecast time. The latter
is set to some predefined value to specify “no real-time information available
(yet)”. An arrival node has a container of leaving transfer edges, one entering
traveling edge and one leaving standing edge. Analogously, a departure node has
a container of entering transfer edges, one entering standing edge and one leaving
traveling edge. Iterators over incoming dependencies and markers for the current
input determining the timestamp of the node (the incoming edge or schedule or
forecast time with maximum timestamp) have to be able to traverse resp. point
to the different representations. We deemed the much more elegant version of
the update routines - pretending the existence of nodes and edges for schedule
and forecast times as well - better suited for presentation.

5 Time-Expanded Search Graph Model

5.1 The Static Model

Let us briefly describe the realistic time-expanded search graph model used in
this work. Its basic idea is — as in the dependency graph before — to model
each departure and arrival event of some train as a node with a timestamp. Each
timestamp here represents the time after midnight in minutes.

Again, for each departure event of some train there is a traveling edge to
its very next arrival event. With each traveling edge we associate a number of
additional attributes: a bitfield representing traffic days, with one bit for each
day of the schedule period, and several train attributes (train category, train
number and name, availability of extra services, and the like).

The difference between the dependency graph and the search graph comes
from the need to model the transfer between trains more explicitly in the latter
case so that a Dijkstra-like shortest path algorithm can be used. Non-constant
transfer times between pairs of connecting trains are modeled with the help of
additional change nodes. For every departure time at a station there is a change
node which is connected via entering edges to all departure nodes at that time.
Change nodes at the same station are ordered increasingly by their timestamp,
and subsequent change nodes (in this order) are interconnected with waiting
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edges. Moreover, at each station the last change node before midnight is linked
to the first change node after midnight. For each arrival node there is a leaving
edge connecting it to the corresponding first change node which is reachable in
the time needed for a transfer from this train to any other. All possible shorter
transfer times (e.g. for trains at the same platform) are realized using special
transfer edges. The subgraph formed by all edges incident to change nodes of a
certain station will be referred to as the change level of this station.

Finally, we have stay-in-train edges each of which connects the arrival node
of some train to the corresponding departure node at the same station, provided
the latter exists. For each optimization criterion, a certain length is associated
with each edge.

Traffic days, possible attribute requirements and train class restrictions with
respect to a given query can be handled quite easily. We simply mark traveling
edges as invisible for the search if they do not meet all requirements of the given
query. With respect to this visibility of edges, there is a one-to-one correspon-
dence between feasible train connections and paths in the graph. More details
of the graph model can be found in [4].

5.2 Search Server MOTIS

Over the last years, the authors developed the timetable information system
MOTIS (multi-objective train information system) which performs a multi-cri-
teria search for train connections in a realistic environment based on the above
described time-expanded graph. To be more precise, MOTIS uses an extension
of this model to incorporate additional features from practice which we omit
here for clarity of the presentation.

Our underlying model ensures that each proposed connection is indeed fea-
sible, i.e. can be used in reality. MOTIS is parameterized to search with respect
to a selection of optimization criteria, most importantly travel time, number of
interchanges, ticket cost, and reliability of all interchanges of a connection. The
search algorithm used within MOTIS is a generalized multi-criteria Dijkstra-like
algorithm enhanced with some additional speed-up techniques like goal-directed
search [4]. The system is designed not only to present the true Pareto-optima,
but more generally “all attractive” connections to customers, see also [4]. MOTIS
has successfully been extended to search for low-cost connections [11] and night
trains [12].

5.3 The Dynamic Model

The static time-expanded graph model has been slightly adapted for the dynamic
scenario. Compared to the standard search graph we have to store additional in-
formation, namely status decisions, a second timestamp for each node to report
actual and scheduled time in query results, additional strings containing reasons
for the delays, and the like. Moreover, we need a slightly different representa-
tion of trains with identical schedules on multiple days. We defer details of this
modification to Section 7.
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Fig. 3. The change level at a station (left) and necessary changes if train ¢* arrives
earlier (middle) or train ¢ arrives later (right).

6 Updating the Search Graph

The update in the search graph does not simply consist of setting new time-
stamps for nodes (primary and secondary delays), insertions (additional trains)
and deletions (cancellations) of nodes and resorting lists of nodes afterwards.
All the edges modeling the changing of trains at the affected stations have to be
recomputed respecting the changed timestamps, additional and deleted nodes,
and connection status information. The following adjustments are required on
the change level (see Figure 3):

— Updating the leaving edges pointing to the first node reachable after a train
change.

— Updating the nodes reachable from a change node via entering edges.

Inserting additional change nodes or unhooking them from the chain of wait-

ing edges at times where a new event is the only one or the only event is

moved away or canceled.

— Recalculating special interchange edges from resp. to arrival resp. departure
nodes with a changed timestamp (either remove, adjust or insert special
interchange edges).

The result of the update phase is a graph that looks and behaves exactly as if
it was constructed from a schedule describing the current situation. Additionally,
it contains information about the original schedule and reasons for the delays.

Next, we give two examples for updating the search graph. In Figure 3 (left)
it is possible to change from train t to all trains departing not earlier than t”
using leaving edge g, any number of consecutive waiting edges and an entering
edge (e.g. h to enter t”). A change to train ¢’ on the same platform is also
feasible using special interchange edge f and, of course, to stay in train ¢ via
stay-in-train edge e. However, it is impossible to change to train t* although it
departs later than t’, because it requires more time to reach it. Suppose train t*
manages to get rid of some previous delay and now arrives and departs earlier
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than previously predicted (see Figure 3, middle part). In the new situation it is
now possible, to change from ¢* to train ¢” using the new leaving edge n and the
existing entering edge h.

In our second example let train t arrive delayed as depicted in Figure 3
(right). As it now departs after ', it is not only impossible to change to ¢/
(special interchange edge f is deleted), but also the departure nodes for the
departures of ¢’ and ¢ are in reverse order. Therefore, the waiting edges have to
be re-linked.

7 Traffic Days

A common simplification in theoretical work on timetable information systems
is the assumption that trains operate periodically. Often even a periodicity of
one hour is used. In real schedules, however, there is a considerable difference
between peak hours, late evenings and “quiet” nights. For our timetable server
MOTIS we take time modulo a single day in order to have a better manageable
graph size as opposed to full time expansion. Recall that traveling edges carry
traffic day flags (stored in bitfields) to model the days of operation, e.g. trains
operating only on weekdays, or weekends, different schedules for school days and
non school-days, trains operating on public holidays according to the weekend
schedule etc.

In our scenario with delay information we have to take care of multiple traffic
days as well. To be able to present the customer with updated information we
need to model not only “today” (the current day) but also tomorrow as some
connections might pass the midnight border (have a so-called “night jump”),
especially if we query with a departure in the afternoon or evening. Resulting
alternative journeys, requested after a delay on a journey, may even end on
the next day due to delays, although no night jump was present in the original
connection.

Therefore, we chose a schedule length of two days. In our time-expanded
graph we represent all the trains operating today and tomorrow. However, trains
that have the same schedule on both days can no longer be represented just once
with two traffic day flags set. To be able to shift today’s train without affecting
the version of tomorrow, thus not incorrectly cloning delays, or vice versa, we
need two distinct versions of such trains.

7.1 Memory Consumption Issues

The simplest version to attain separate nodes for today’s and tomorrow’s events
is to use full time expansion on all our schedule days and not take time modulo
1440 and use traffic day flags on the train edges. Unfortunately, this would not
only increase the number of event nodes and edges as well as the change edges, it
would also significantly increase the number of change nodes and waiting edges.
Whereas there is no way to avoid the increase for the former type of nodes and
edges, we found a way to keep the size of the rest the same: We only use full time
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expansion for departure and arrival events and link all events to a change level
with only one node per necessary timestamp, regardless of the day of that event,
i.e. the number of change nodes and waiting edges remains the same, only the
number of adjacent edges to the change nodes increases. Three different models
for the search graph arise.

— Model (A) is the static model where the same events on two subsequent days
are represented only once but two traffic day flags are set.

— Model (B) treats each arrival and departure event individually and uses the
sparse change level implementation as described above.

— Model (C) also treats each arrival and departure event individually but uses
full change level expansion.

Note that in the dependency graph we opted for full time expansion. There is
no change level with waiting edges and all the change representation is between
the trains itself and only necessary to decide whether trains wait for others or
not and compute the resulting changes. In this model a source delay propagation
may or may not delay events on the following day. There is no need for case
distinctions due to day changes.

Test data. To study the effect of these models on the space consumption, we
use the train schedule of Germany in 2008. The schedule contains 68,300 trains
for the whole year with over 5,000 distinct bitfields for the days of operation.
We look at the graphs prepared for two subsequent days, either two weekdays,
Wednesday and Thursday (We & Th) with 38,600 trains with distinct schedules
or for Sunday and Monday (Su & Mo) with 46,600 trains with distinct schedules.

Comparison of models. In Table 1, we compare our three different models
for the search graph. For the more homogeneous case of two weekdays version
(C) requires double the amount of space while for our variant (B) we manage to
increase the number of nodes by two thirds and the number of edges by four fifths.
The tremendous increase of (C) is due to the large number of trains operating
identically each weekday. If we look at the graph for Sunday and Monday the
increase is much smaller as many of the trains operate either on Monday or on
Sunday, therefore the increase in nodes and edges for the trains is below 50%.
Still our model improves the additional required memory space from nearly one
half to about one third.

During the actual search for train connections, variant (B) has a slight run-
ning time overhead in comparison with full time expansion (C). This overhead
turns out to be negligible if a look-ahead in the search process categorizes enter-
ing edges as not allowed if they lead to a departure node for a train not operating
on the required day.
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event train/std|change change waiting| total total
model unit|{nodes edges |nodes edges edges |nodes edges

We & Th (A) @nw 988 950 459 988 459| 1447 2397
We & Th  (B) @nw || 1956 1878 459 1954 459 2415 4291
We & Th (C) @nw || 1956 1878 912 1954 912| 2868 4744
increase (a — B) (in %)|| 98.0 97.7 0 978 0] 66.9 79.0
increase (a — ¢ (n %)|| 98.0 97.7| 98.7 97.8 98.7| 98.2 97.9

Su& Mo (A) || 1181 1134 498 1180 498| 1679 2812
Su& Mo (B) @]l 1702 1634 498 1701 498| 2200 3833
Su& Mo (C) || 1702 1634 798 1701 798| 2500 4133
increase (A — B) (in %)|| 44.1 44.1 0 44.2 0| 31.0 36.3
increase (A — ¢) (in %)|| 44.1 44.1] 60.2 44.2 60.2| 48.9 47.0

Table 1. Sizes of the search graph for two days, Wednesday and Thursday resp. Sunday
and Monday and the increase when changing between the models (A), (B), and (C) as
described in the text.

7.2 Moving from One Day to the Next

At midnight we have to change the current day for our real-time information
server as well as the search servers. Now, information about yesterday is no longer
relevant as tomorrow becomes today and we need to load the “new tomorrow”.

The real-time information server loads the dependency graph for tomorrow
and “forgets” yesterday. With the fully time-expanded model there is no hassle
in doing so. Note that we still have to keep yesterday’s events that are delayed to
today and have not happened yet, but nothing more about yesterday is needed
any longer. Thus, we can delete all information about yesterday’s events in the
data structure. With our prototype, this whole procedure is finished in less than
35 seconds for the complete German timetable.

The search servers need a longer update phase than usual as they have to
be restarted with the now current day and the following day. Afterwards, they
request an update for a new server (exactly as described for a new server in Sec-
tion 3). In this update they receive all information for today currently available.
These updates typically take less than ten seconds. Together with the restart
time of about 20 seconds a single search server is down for about half a minute.
Even a server that has not yet changed days can still be updated after midnight
and produce correct search results, as only the information about the next day is
missing, not the current day. So there is no problem with the last server updating
at say 01:00 a.m. Since midnight is not a peak hour for timetable information
systems a number of servers might change days concurrently without compro-
mising the availability of service. In summary, within a multi-server solution
down-times of individual servers can easily be hidden from the customer.
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8 Evaluation of the Prototype

We implemented the dependency graph and the update algorithm described in
Section 4 and extended our time table information system MOTIS to support
updating the search graph (cf. Section 6). Although these update operations are
quite costly, we give a proof of concept and show that they can be performed
sufficiently fast for a system with real-time capabilities.

Our computational study uses the German train schedule of 2008. During
each operating day all trains that pass various trigger points (stations and im-
portant points on tracks) generate status messages. There are roughly 5000 sta-
tions and 1500 additional trigger points. Whenever a train generates a status
message on its way, new predictions for the departure and arrival times of all its
future stops are computed and fed into a data base. German railways Deutsche
Bahn AG provided delay and forecast data from this data base for a number of
operation days. The simulation results for these days look rather similar with-
out too much fluctuation neither in the properties of the messages nor in the
resulting computational effort.

In the following subsection, we present results for a standard operating day
with an average delay profile testing various waiting profiles broadcasting the
update information as soon as it becomes available. In the succeeding subsection
we will present first results for the multi-server architecture (as described in
Section 3) and test different update intervals. All experiments were run on an
Intel Xeon 2.6 GHz with 8GB of RAM.

As no system with the capabilities of our prototype exists, we cannot com-
pare our results to others. To ensure the correctness of our approach we used
automated regression tests continuously checking the status of a large number
of connections and determining alternatives, collecting meta-information about
the encountered delays in the process. Furthermore, we intensively investigated
isolated test cases (e.g. explicit search for trains known to us that they were de-
layed, search for trains departing next to a delay, searches for which the off-line
optimum was affected by a delay).

8.1 Overall Performance and Waiting Profiles

To test our system, we used five sets of waiting profiles. Basically, the train cat-
egories were divided into five classes: high speed trains, night trains, regional
trains, urban trains, and class “all others.” Waiting times are then defined be-
tween the different classes as follows:

— standard High speed trains wait for each other 3 minutes, other trains wait
for high speed trains, night trains, and trains of class “all others” 5 minutes,
night trains wait for high speed and other night trains 10 minutes, and 5
minutes for class “all others.”

— half All times of scenario standard are halved.

— double All times of scenario standard are doubled.

— all5 All times of scenario standard are set to five minutes, and in addition
regional trains wait 5 minutes for all but urban trains.
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search graph dependency graph

event nodes {0.99 mil events 0.97 mil

change nodes|0.46 mil standing edges|0.45 mil
edges 2.40 mil traveling edges|0.49 mil

Table 2. Properties of the search graph (left) and dependency graph (right) for one
day.

transfer edges ‘5min 15min 30min 45min 60min
std / half / double| 7.1k 54.7k 123.8k 207.8k 267.8k
all5 / all 10 14.6k 168.3k 399.6k 665.4k 874.3k

Table 3. The number of transfer edges depending on the waiting policy and the max-
imum allowed time difference é between feeding and connecting train.

— all10 All times of the previous scenario are doubled.

It is important to keep in mind that the last two policies are far from reality
and are intended to strain the system beyond the limits it was designed to handle.

Our dependency graph model assumes that we know at each station which
pairs of trains have potentially to wait for each other, i.e., which transfer edges
are present. In our implementation we use the pragmatic rule, that if the dif-
ference between the departure event of train ¢; and the arrival event of another
train to at the same station does not exceed a parameter §, then there is a
transfer edge between these two events.

For each of these different waiting profiles we tested different maximum dis-
tances (in minutes) of feeding and connecting trains § € {5,15,30,45,60}, and
compare them to a variant without waiting for other trains (policy no wait). In
this reference scenario it is still necessary to propagate delays in the dependency
graph to correctly update the train runs. Thus, the same computations as with
policies for delays is carried out, only the terms for feeding trains are always
Zero.

We constructed search and dependency graphs from the real schedule con-
sisting of 36,700 trains operating on the selected day. There are 8,817 stations
in the data. The number of nodes and edges in both graphs are given in Table 2.
The number of standing and traveling edges are in one-to-one correspondence to
the stay-in-train and traveling edges of the search graph. The number of trans-
fer edges depends on the waiting policy and parameter ¢ and can be found in
Table 3. Note that, whether a transfer edge exists or not, depends on the classes
that wait for each other and not on the actual number of minutes they wait.
Therefore, the number of edges are identical for the policies half, standard, and
double as well as for the policies all5 and all10. There is a monotonous growth
in the number of transfer edges depending on the parameter §. Additionally, the
number of these edges increases as more trains wait for other trains because of
additional rules.
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In Table 4, we give the results for our test runs for the different policies
and values of §. Running times are averages over 25 test runs. For the chosen
simulation day we have a large stream of real forecast messages. Whenever a
complete sequence of messages for a train has arrived, we send them to the
dependency graph for processing. 336,840 sequences are handled. In total we
had 6,340,480 forecast messages, 562,209 messages of the type “this train is now
here” and 4,926 connection status decisions. Of all forecast messages 2,701,277
forecasts are identical to the last message already processed for the corresponding
nodes. The remaining messages either trigger computations in the dependency
graph or match the current timestamp of the node. The latter require neither
shifting of nodes nor a propagation in the dependency graph. The resulting
number of node shifts is given in the seventh column of Table 4. Depending on
the policy we have a different number of nodes that were shifted and stations
that have at least one delayed event (last two columns of the table).

The key figures for the computational efficiency (required CPU times in sec-
onds, operation counts for the number of touched stations and node shifts in
multiples of thousand) increase when changing to policies for which trains wait
longer or more trains have to wait. Increasing § yields a higher effect the more
trains wait. The overall small impact of changing § is due to the majority of
delays being rather small. We notice a significant growth in all key criteria when
increasing ¢ from 5 to 15. All policies behave rather similarly for § = 5, whereas
the differences between the realistic policies and the extreme versions and even
from all5 to all10 for higher values of § is apparent.

Amongst the plausible policies there is only a 16% difference in the number of
moved nodes. It little more than doubles going to policy all5 and even increases
by a factor of 3.8 towards policy all10. Roughly 40 seconds of our simulation time
are spent extracting and preprocessing the messages from the forecast stream.
This IO time is obviously independent of the test scenario. The increase in
running time spent in the search graph update is no more than 3 seconds for
6 > 5 for all policies except alll0 with 7 seconds and differs by at most 10
seconds or 17% among the realistic scenarios. The running time scales with the
number of shifts. An increase of factor 1.9 resp. 3.4 of node shifts results in a
factor of 1.8 resp. 3.3 in running time (compare policies double to all5 and all10
with 6 = 60). The time spent in the dependency graph differs by at most 1
second (about 16%) for realistic scenarios and stays below 30 seconds even for
the most extreme policy.

Even for the most extreme scenario a whole day can be simulated in less than
5 minutes. The overall simulation time for realistic policies lies around 2 minutes.
For the policy standard with § = 45, we require on average 17us reconstruction
work in the search graph per executed node shift. By incident, also the overall
runtime per computed message is 17us.

Worst-case considerations (based on policy standard with § = 45).
The highest number of messages received per minute is 15,627 resulting in 29,632
node shifts and a computation time of 0.66 seconds for this minute. However, the



20 M. Miller—-Hannemann and M. Schnee

Instance Computation time for| Node | With delay
policy 1 SG DG IO total| shifts |[nodes|stations
inmin| ins ins ins ins| ink |ink
no wait - 59.8 6.4 39.4 105.6| 3,410|396.2| 5,385

5 59.1 6.240.0 105.3| 3,432|396.6| 5,397

15 60.7 6.4 39.7 106.8| 3,525|400.1| 5,483

half 30 60.8 6.440.4 107.7| 3,535|400.4| 5,494
45 61.2 6.540.0 107.8| 3,539|400.6| 5,494

60 62.3 6.8 39.7 108.8| 3,540|400.7| 5,496

5 59.1 6.2 39.3 104.6| 3,443|396.8| 5,408

15 62.6 6.539.5 108.5| 3,614|402.5| 5,532
standard 30 63.4 6.740.1 110.2| 3,636|403.2| 5,541
45 63.6 6.8 39.9 110.2| 3,646|403.6| 5,541

60 63.6 6.7 40.3 110.7| 3,651|403.7| 5,545

5 58.9 6.3 39.7 104.9| 3,447|396.8| 5,419

15 66.4 6.6 40.4 113.4| 3,835|406.2| 5,590

double 30 67.9 6.940.5 115.3| 3,908|407.5| 5,639
45 69.4 7.240.1 116.7| 3,945|408.0| 5,642

60 69.0 7.339.9 116.2| 3,959|408.1| 5,642

5 60.7 6.440.3 107.4| 3,623|403.5| 5,588

15 [123.1 11.540.0 174.6| 7,603|440.5| 6,051

allb 30 |124.913.0 40.4 178.3| 7,670|442.8| 6,064
45 |124.9 14.7 40.6 180.2| 7,687|443.4| 6,064

60 |126.0 16.5 40.4 182.9| 7,689|443.7| 6,070

5 60.7 6.440.4 107.5| 3,651|404.0| 5,608

15 [193.8 19.0 39.8 252.6|13,052|457.9| 6,118

all10 30 |195.2 21.6 40.9 257.7|13,231|463.0| 6,145
45 |198.0 24.6 40.6 263.2|13,346| 464.4| 6,148

60 |200.7 27.3 40.7 268.7|13,466| 465.3| 6,162

Table 4. Computation time for the whole day (propagation in the dependency graph
(DG) and update of the search graph (SG), IO and total) and key figures (in multiples
of thousand) for the executed node shifts in the search graph and the number of nodes
and stations with changed status information with respect to different policies for

delays.
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largest amount of reconstruction work occurred in a minute with 5,808 messages.
It required 172,432 node shifts and took 2.38 seconds; this is the worst case
minute which we observed in the simulation. Thus, at our current performance
we could easily handle 25 times the load without a need for event buffering. This
clearly qualifies for live performance.

8.2 Multi-Server Performance

As we have seen in the previous subsection most of the time is spent in re-
constructing the search graph. Applying sophisticated software engineering the
update process has been sped up considerably. Additionally, a big potential lies
in doing less reconstruction work. In a real-time environment it is not necessary
to update multiple times per minute as soon as new information is available (as
we did in the previous subsection). It clearly suffices to update each minute. De-
pending on the load balancing scheme every 2 or 3 minutes might still produce
results of high quality.

To be able to compare the numbers to the previous section we tested the
two servers as introduced in Section 3 “in line”, i.e. one waited for the other to
finish computation before continuing his own work. We use our waiting profile
“standard” with & = 45 for all versions. The baseline version does not use the
UDS and immediately updates the search graph. The version split additionally
inserts and retrieves events into/from the UDS. Our code spends about 47 sec-
onds on extracting and preprocessing the messages from the forecast stream and
propagation in the dependency graph. Pushing all the events through the UDS
data structure in the split architecture only requires an additional 7.2 seconds.

As we do not see a need for update intervals shorter than one minute, we now
read all incoming messages for a particular minute and calculate the resulting
changed event times in the dependency graph. These are transmitted to the data
structure UDS in our real-time information server part. Meanwhile the search
graph requests an update every 1, 2, 3, 4, or 5 minutes, using either the iterator
or map version. The results can be found in Table 5. The numbers are averages
over 25 runs.

By sending the state delta of the last x minutes as a batch job to the search
graph we save a lot of reconstruction work due to mutually interacting messages
arriving between two subsequent updates, e.g. oscillating forecasts for trains, or
reconstruction is done for a train but later it is shifted again due to a changed
arrival time of one of its feeding trains.

With increasing interval size the number of messages to transmit significantly
decreases. The resulting time required for updating the search graph is sped up
by nearly 10 seconds when changing from immediate update to an interval of
one minute. The increase of the interval size by one additional minute within
the range of [1-5] reduces the execution time by a few seconds.

The iterator version of detecting events to transmit (cf. Section 3) only uses
the release time information and cannot detect that an event does not require
shifting, therefore it transmits 149k to 404k (depending on the update interval)
of these irrelevant messages demanding a node “shift” to the node’s current
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Instance Transmissions | Computation time
needed unnec-| SG UDS total

Version interval essary ins ext
inmin| ink ink |insinsins ins
baseline - 3646 0/63.5 0.0 0.0 110.3
split - 3646 0/63.7 3.7 3.5 117.7
1 3143 0/53.9 3.1 55.6 159.0
2 2809 149(45.5 2.9 29.3 124.4
iterator 3 2447 284|38.3 2.9 20.4 108.2
4 2177 360(33.3 2.8 15.8 98.6
5 1954 404|29.3 2.8 13.1 91.4
1 3143 0[54.3 4.9 2.11074
2 2809 0/45.4 49 1.9 98.5
map 3 2447 0[38.3 4.8 1.8 91.2
4 2177 0[33.4 4.7 1.7 86.3
5 1954 0/29.2 4.7 1.5 81.7

Table 5. The number of transmitted events, node shifts and execution time for sim-
ulating the whole day. We compare version with and without two server architecture
using an iterator or a map to determine the relevant events (cf. Section 3) for different
update intervals.

position. On the other hand, the map version only transmits events with changed
timestamp, even if the release time is newer, therefore we do not have unnecessary
transmissions. As shifts to the same position are never executed we only have
the unnecessary transmission and no extra work, as we can see with the identical
run times for the search graph update (column SG).

Inserting the information (column UDS ins) about changed event times into
the UDS takes between 2.8 and 3.7 seconds, depending on the number of insertions
(and thus the interval size). For the map version the bookkeeping requires an
additional 1.8 to 2.0 seconds for the whole day. While the extraction (column
UDS ext) using the map version requires 1.5 to 2.1 seconds, iterating for each
update over all stored events to find the relevant new information in the iterator
version is very costly and takes 13.1 to 55.6 seconds. Obviously, these times do
not depend on the number of transmissions but on the number of iterations, as
we observe that the extraction time is inversely proportional to the interval size.

The improvement in run time of 3 seconds (from 110.3 to 107.4 seconds),
when changing from the baseline version to the split version with an interval of
one minute, does not seem like much. However, it enabled us to do load balancing
and handle updates on demand with our multi-server approach. The update time
for the search servers consists of the time for receiving events from the UDS plus
the time for the search graph update. Therefore, instead of taking 110.3 seconds
to read messages, propagate delays and update the search in our baseline version,
we only need 56.4 seconds in the split architecture for keeping the search graph
up-to-date. Thus, we gain more than 50 seconds of available computation time
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per search server (about half the time required by the baseline version that does
all the work on its own). Together with the initial startup phase and the first
update with all relevant information for today depending on yesterday’s data of
about half a minute (cf. Subsection 7.2) a search server is only 60 to 90 seconds
per day busy with startup and updating. This means that each search server can
use 99.9% of its time for answering search queries.

The real-time information server spends about 47 seconds for reading mes-
sages and propagation in the dependency graph and additional 3 seconds storing
the data. For each registered server (in our tests just one) it takes 2 seconds
maintaining the map of relevant events and 2 seconds to extract and transmit
those events. Thus, we have by far enough time to update a multitude of search
servers.

9 Conclusions and Future Work

We have built a first prototype which can be used for efficient off-line simulation
with massive streams of delay and forecast messages for typical days of operation
within Germany. Using the presented multi-server solution, the correct handling
of all necessary updates is so fast that each search server can use almost all
of its time for answering search queries. Stress tests with extreme policies for
delays showed that the update time scales linearly with the amount of work. So
even for cases of major disruptions we expect a sufficient performance of such a
multi-server solution. Compared to typical stream profiles, we are able to handle
about 25 times as much reconstruction work.

It remains an interesting task to implement a live feed of delay messages for
our timetable information system and actually test real-time performance of the
resulting system. Since update operations in the time-dependent graph model
are somewhat easier than in the time-expanded graph model, we also plan to
integrate the update information from our dependency graph into a multi-criteria
time-dependent search approach developed in our group (Disser et al. [13]).

A true real-time timetable information system as demonstrated by our proto-
type opens the door for a new service to passengers who want their travel plans
supervised. The provider of such a service would constantly check the validity of
planned connections, and in case of necessary changes due to delays inform the
affected passenger and propose new alternative connections by sending messages
to a mobile phone or an email address.
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